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Comparison of field theory models of interest rates with market data
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We calibrate and test various variants of field theory models of the interest rate with data from Eurodollar
futures. Models based on psychological factors are seen to provide the best fit to the market. We make a model
independent determination of the volatility function of the forward rates from market data.
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I. INTRODUCTION

In this paper, we compare field theory models of inter
rates with market data, and propose certain modified mo
inspired from theoretical considerations and observed f
about the interest rates. The fundamental quantity tha
modeled is the forward ratef (t,x), which is the interest
rate—fixed at timet—for an instantaneous deposit at som
time x.t in the future.

The theoretical framework for all these models in Ba
quie’s formulation @1–3# of forward rates as a two
dimensional quantum field theory. The Baaquie model i
generalization of the Heath-Jarrow-Morton~HJM! model;
the key feature of the field theory model is that the forwa
ratesf (t,x) are imperfectly correlated in the maturity dire
tion x.t, and which is specified by a rigidity parameterm.
The models we study are the following:~a! forward rates
with constant rigidity@1#, ~b! forward rates with the variation
of the spot rate constrained by a parameter,~c! forward rates
with maturity dependent rigiditym(x2t), and ~d! forward
rates with nontrivial dependence on maturity specified by
arbitrary functionz5z(x2t).

We first briefly review Baaquie’s field theory model an
review the market data used in this study. We then introd
two variants of Baaquie’s model and test these models.
find that the observed correlation structure can be expla
by a relatively straightforward two-parameter field theo
model that also has a meaningful theoretical interpretatio

II. THE HJM MODEL

Definition of the model

In the HJM model, the forward rates are given by

f ~ t,x!5 f ~ t0 ,x!1E
t0

t

dt8a~ t8,x!

1(
i 51

K E
t0

t

dt8s i~ t8,x!dWi~ t8!, ~1!

where Wi are independent Wiener processes. We can
write this as
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so

] f ~ t,x!

]t
5a~ t,x!1(

i 51

K

s i~ t,x!h i~ t !, ~2!

where h i represent independent white noises. The act
functional is

S@W#52
1

2 (
i 51

K E dth i
2~ t !. ~3!

We can use this action to calculate the generating functio
which is

Z@ j ,t1 ,t2#5E DW expF(
i 51

K E
t1

t2
dt j i~ t !Wi~ t !GeS0@W,t1 ,t2#

5expF(
i 51

K E
t1

t2
dt j i

2~ t !G . ~4!

III. FIELD THEORY MODEL WITH CONSTANT
RIGIDITY

We now review Baaquie’s field theory model presented
Ref. @1# with constant rigidity. Baaquie proposed that th
forward rates being driven by white noise processes in
~2! be replaced by considering the forward rates to be
quantum field. To simplify notation, we write the evolutio
equation in terms of the velocity quantum fieldA(t,x), and
which yields

] f ~ t,x!

]t
5a~ t,x!1(

i 51

K

s i~ t,x!Ai~ t,x! ~5!

or

f ~ t,x!5 f ~ t0 ,x!1E
t0

t

dt8a~ t8,x!

1(
i 51

K E
t0

t

dt8s i~ t8,x!Ai~ t8,x!. ~6!

The main extension to HJM is thatA depends onx as well as
t unlike W which only depends ont.

While we can put in many fieldsAi , we will see from our
analysis that the generality brought into the process du
the extra argumentx will make one field sufficient. Hence, in
future, we will drop the subscript forA.
©2004 The American Physical Society29-1
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Baaquie further proposed that the fieldA has the free-
~Gaussian! free-field action functional

S52
1

2 Et0

`

dtE
t

t1TFR
dxFA21

1

m2 S ]A

]x D 2G ~7!

with Neumann boundary conditions imposed atx5t and x
5t1TFR. This makes the action equivalent~after an integra-
tion by parts where the surface term vanishes! to

S52
1

2 Et0

`

dtE
t

t1TFR
dx A~ t,x!S 12

1

m2

]2

]x2DA~ t,x!.

~8!

This action has the partition function

Z@ j #5expS E
0

t1
dtE

t

t1TFR
dx dx8 j ~ t,x!

3D~x2t,x82t ! j ~ t,x8! D ~9!

with

D~u,u8;TFR!

5m
coshm~TFR2uu2u8u!1coshm„TFR2~u1u8!…

2 sinhmTFR

5D~u8,u;TFR! ~symmetric function ofu,u8!, ~10!

where u5x2t and u85x82t. We can calculate expecta
tions and correlations using this partition function. Note th
due to the Neumann boundary conditions, the inverse of
differential operatorD actually depends on only the differ
encex2t. The above action represents a Gaussian rand
field with covariance structureD. In Ref. @1#, a different
form was found as the boundary conditions used were
richlet boundary conditions with the end points integra
over. This boundary condition is in fact equivalent to t
Neumann condition, which leads to the much simpler pro
gator above. In the limitTFR→`, which we will usually
take, the propagator takes the simple fo
me2mu. coshmu, , where u. and u, stand for max(u,u8)
and min(u,u8) respectively.

When m→0, this model should go over to the HJM
model. This is indeed the case, since limm→0D(u,u8;TFR)
51/TFR. The extra factor ofTFR is irrelevant as it is due to
the freedom we have in scalings andD. The s we use for
the different models are only comparable afterD is
normalized.1 After this choice of normalization, the propag
tor for both the HJM model and the field theory model in t
limit m→0 goes asD(u,u8)→1, showing that the two mod
els are equivalent in this limit.

1This freedom exists since we can always make the transforma
s(u);z(u)s(u) and D(u,u8);D(u,u8)/z(u)z(u8)—wherez~u!
is an arbitrary scale factor—without affecting any result.
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The basic model with constant rigidity can be generaliz
in many different ways. The generalizations to positive v
ued forward rates and to models with stochastic volatility
studied in Refs.@2,3#. In this paper, we generalize the fre
field model to more complex dependence ofm and f (t,x) on
the maturity directionu.

IV. EURODOLLAR MARKET DATA

We use the Eurodollar futures data for the analysis of t
paper. A Eurodollar futures contract represents the inte
rate on a deposit of US $1 000 000 for three months at so
time in the future. At present, futures contracts for depo
of up to ten years into the future are actively traded. Sign
cant historical data for contracts on deposits up to se
years into the future are available.

It was assumed for simplicity that the Eurodollar futur
prices directly reflect the forward rate, an assumption pre
ously used in the literature@4#. This is a reasonable assum
tion as the forward rates are small enough, so that the dif
ence between the logarithmic measure of the forward
used in theory and the arithmetic rates used in the marke
insignificant. If one makes the reasonable approximation
f (t,u) is linear for u between contract times that are sep
rated by a three month’s interval, one can use these data
direct measure of the forward rates.

We have also analyzed treasury bond tick data from
GovPx database, but found it impossible to obtain forwa
rates accurate enough for our purposes. The main reaso
this is that while we were able to obtain reasonably accu
yields for a few maturities, the differentiation required to g
the forward rates from the yields introduced too many in
curacies. This is somewhat unfortunate since treasury bo
represent risk-free instruments, while a small credit risk
ists for Eurodollar deposits.

For the following analysis, we used the closing prices
the Eurodollar futures contracts for the period of 1990–19
This is the same data as used by Matacz and Bouchaud@4#,
where the spread of the forward rates and the eigenfunct
of its changes in time are analyzed. For our purposes,
found it more useful to look at the scaled multivariate cum
lants of the changes in forward rates for different matur
times.

V. ASSUMPTIONS BEHIND THE TESTS OF THE MODELS

The main assumption that is made for all the tests of
models is that of time translation invariance. In other wor
we have assumed thats(t,u) depends only onu and not
explicitly on t. We also assume that the propagatorD(u,u8)
has no explicit time dependence, which is possible in pr
ciple. It is reasonable and conceptually economical to
sume that different times in the future are equivalent. F
ther, carrying out any meaningful analysis while the
quantities are subject to changes in time is more difficult

Another important assumption that has to be made is
the forward rate curve is reasonably smooth at small in
vals at any given point in time. This assumption is ve
difficult to test in any meaningful sense, given the relati

on
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COMPARISON OF FIELD THEORY MODELS OF . . . PHYSICAL REVIEW E 69, 036129 ~2004!
paucity of data as forward rate data is available only at thr
month intervals~which is what necessitates this assumpt
in the first place!. However, the assumption is a reasona
one to make as one would intuitively expect that the forw
rate, say, three years into the future would not be too dif
ent from that of three years and one month into the futur

In fact, we will show that there seems to be strong e
dence of very long term correlations in the movements of
forward rate. This seems to make the smoothness assum
reasonable as the nearby forward rates tend to move tog
~except possibly at points very close to the current tim!.
This assumption is required as the forward rate data are
vided for constant maturity, which we have been denoting
x, while we want data for constantu, as shown in Fig. 1.
With this assumption, we can get the data by a simple lin
interpolation. The loss in accuracy due to this linear inter
lation is not all that serious ife, the time interval oft be-
tween specifications of the forward rates, is small, since
random changes which we are interested in will be mu
larger than the introduced errors. This same procedure
used in Matacz and Bouchaud@4#.
e

h
an
-

ith
e

ro
rly
re

03612
e-

e
d
r-
.
-
e
ion
her

o-
y

ar
-

e
h
as

VI. THE CORRELATION STRUCTURE
OF THE FORWARD RATES

An important quantity to look at in the analysis of forwa
ratesf (t,u) is the correlation~or scaled covariance! among
their changes for differentu. Specifically, we are interested i
the correlation betweend f (t,u) and d f (t,u8), where
d f (t,u)5 f (t1e,u)2 f (t,u):

FIG. 1. The lines of constantu for which we have obtained the
forward rates by linear interpolation from the actual forward ra
which are specified at constantx.
C~u,u8!5
^d f ~ t,u!d f ~ t,u8!&2^d f ~ t,u!&^d f ~ t,u8!&

A^d f 2~ t,u!&2^d f ~ t,u!&2A^d f 2~ t,u8!&2^d f ~ t,u8!&2
. ~11!
s of
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Using a free ~Gaussian! quantum field theory~QFT!
model, this quantity should be equal to

CQFT~u,u8!5
D~u,u8!

AD~u,u!D~u8,u8!
. ~12!

If we have a model for the propagatorD(u,u8), we have
a prediction for this correlation structure. Alternatively, w
can use the correlation structure to fit free parameters
D(u,u8).

It should be noted that for free~Gaussian! quantum fields
the normalized correlation isindependentof s~u!, so no as-
sumption of its form has to be made. This is the reason w
we used the scaled covariance rather than the covari
itself to perform the study. It is equivalent to fixing the in
herent freedom in the quantitiess and D so as to make
D(u,u)51. We then have

s~u!5A^d f 2~ t,u!&2^d f ~ t,u!&2; D~u,u!51. ~13!

The reduction in the freedom ofs allows us to directly
estimate it from data and is shown in Fig. 2. Further, w
this normalization for the propagator the correlation betwe
the changes in the forward curve is given exactly byD. The
correlation structure in the market estimated from the Eu
dollar futures data is shown in Fig. 3. The structure is fai
stable in the sense that the correlation structure for diffe
sections of the data are reasonably similar.
in

y
ce

n

-

nt

Since the propagator is always symmetric, for purpose
comparison for the different models it will be convenient
calculate onlyD(u, ,u.).

For the one-factor HJM model, this correlation structu
is constant as all the changes in the forward rates are
fectly correlated. In other words,DHJM(u,u8)51. For the
two-factor HJM model, the predicted correlation structure
given by

CHJM~u,u8!5
s1~u!s1~u8!1s2~u!s2~u8!

As1
2~u!1s2

2~u!As1
2~u8!1s2

2~u8!

5
11g~u!g~u8!

A11g2~u!A11g2~u8!
. ~14!

We see that this correlation structure depends on a func
of g(u)5s1(u)/s2(u). Hence, a whole function has to b
fitted from the correlation structure, something which is qu
infeasible. The covariance given by

C~u,u8!5^d f ~ t,u!d f ~ t,u8!&2^d f ~ t,u!&^d f ~ t,u8!&
~15!

might be a better quantity for testing the HJM model, since
is simpler than the normalized correlation. For the two-fac
HJM model, the prediction of the covariance has a simp
form
9-3



h

ar
t

ro
in

JM
e
c
id

ri-
n
le
it

in
n

ari-

a-

be
nd

e

n in
he

46
tima-
rval

he

is
or-

son

is

e

r

re

es

B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036129 ~2004!
CHJM~u,u8!5s1~u!s1~u8!1s2~u!s2~u8!. ~16!

We still need to specify a functional form fors1 ands2 as it
is not possible to estimate entire functions from data. T
usual specification ofs1(u)5s0 ands2(u)5s1e2lu is eas-
ily seen to be unable to explain many features of the cov
ance shown in Fig. 4 such as the peak at one year or
sharp reduction in covariance as the maturity goes to ze

We hence conclude that the one-factor HJM model is
sufficient to characterize the data, while the two-factor H
model provides us with too much freedom, because we n
an entire arbitrary function to explain the correlation stru
ture. If we try to reduce the freedom by theoretical cons
erations, we are again unable to explain the data.

We will see that the field theory model with constant
gidity, while explaining some features of the correlatio
does not predict the correlation very well. We are hence
to consider various generalizations of the constant rigid
model.

VII. ANALYSIS OF FIELD THEORY MODEL
WITH CONSTANT RIGIDITY

We have analyzed this model in detail in the preced
section. We have seen that the model describes the cha

FIG. 2. The empirically determined volatility function fo
Gaussian field theory models given by s(u)
5A^d f 2(t,u)&2^d f (t,u)&2, with normalization chosen to be
D(u,u)51.

FIG. 3. The normalized correlation structu
^d f (t,u)d f (t,u8)&/A^d f 2(t,u)&A^d f 2(t,u8)& observed in the mar-
ket.
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in the forward rates in terms of a Gaussian random fieldA
whose structure is defined by the action in Eq.~7!. For con-
venience, we repeat the action below in terms of the v
ablest andu5x2t,

S52
1

2 Et0

t1
dtE

0

`

duFA21S ]A

]u D 2G . ~17!

To obtain the predicted correlation structure from prop
gator ~10!, we take the limitTFR→` and obtain

D~u,u8!5me2mu. coshmu,5
m

2
~e2muu2u8u1e2m~u1u8!!.

~18!

The predicted correlation structure for this model can
found from this form of the propagator by normalization a
from Eq. ~12! and obtain

CQFT
~1! ~u,u8!5Ae2mu. coshmu,

e2mu, coshmu.
. ~19!

To estimate the parameterm from market data, we use th
Levenberg-Marquardt method from Presset al. @5# to fit the
parameters to the observed correlation structure show
Fig. 3. The fitting was done by minimizing the square of t
error. The overall correlation was fitted bym50.061 yr21.
To obtain the error bounds, the data was split into 3
datasets of 500 contiguous days of data each and the es
tion done for each of the sets. The 90% confidence inte
for this dataset is~0.057, 0.075!. Note that the confidence
interval is asymmetric from the overall best fit due to t
nonlinear dependence of correlation~19! on m. The root
mean square for the correlation for the best fit value
4.23%, which shows that the model’s prediction for the c
relation structure is not very good.

The main problem, as can be seen from a compari
between the prediction for the best fitm in Fig. 5 and the
actual correlation structure in Fig. 3, is that the prediction
largely independent of the actual value ofu and largely de-
termined byuu2u8u, which is not the case in reality. Th
correlation rapidly increases asu increases in reality.

FIG. 4. The covariance of changes of forward rat
^d f (t,u)d f (t,u8)& observed in the market.
9-4
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VIII. FIELD THEORY WITH CONSTRAINED SPOT RATE

One clear fact we notice from the covariance of t
changes in the forward rates in Fig. 4 is that the covaria
falls rapidly asu→0. This observation leads one to a mod
whereA(t,0) is constrained to follow a normal distributio
with variancea. The mean ofA(t,0) can be fixed at any
value, but will cause a corresponding change ina~0! which
makes the mean value irrelevant. For calculational purpo
it is easiest to assume that it remains at zero. This const
can be implemented by modification of the action to

eSconstrained5E
2`

`

djei jA~ t,0!e2a2j2/2eS, ~20!

whereS is the action specified in Eq.~17!. The propagator
D(u,u8) for this model is given by

D~u,u8!5me2mu.S coshmu,2
me2mu,

m1a D . ~21!

After normalizing, we see that the prediction for the corre
tion structure is given by

CQFT
~2! ~u,u8!5S e2mu.S coshmu,2

me2mu,

m1a D
e2mu,S coshmu.2

me2mu.

m1a D D
1/2

.

~22!

We can see that the free parameters arem anda. Further,
it will be seen that it is easier to consider the ratioa/m2 as it
is dimensionless. The results of the Levenberg-Marqua
method show that the fitted values ofm and a were very
small, of the order of 1027 yr21 for m and 10213 yr22 for a,
both being very unstable but the ratioa/m2 was stable with a
value in the range~6.7,10.7! with an overall best fit of 9.4.
The most reasonable explanation for this behavior is that
ratio a/m2 determines the behavior of Eq.~22! for small m
and it is this region of the parameter space which give
correlation structure closest to the empirically observed o

FIG. 5. Fitted correlationCQFT
(1) for the constant rigidity model.
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The correlator for the constrained propagator looks v
similar to Fig. 5, except that the behavior at largeu is slightly
better when the constraint is put in. The root mean squ
error was 3.35% which again means that the fit was not v
good, though significantly better than if the constraint w
not applied. It must be recognized that the constraint int
duces one extra free parameter which should improve
best fit. Hence, we see that this model, while again perfo
ing better than HJM, is still not very accurate. While th
results are not very good, they do represent a reasonable
approximation and are still significantly better than the on
factor HJM model.

IX. FIELD THEORY MODEL WITH MATURITY
DEPENDENT RIGIDITY µÄµ„u…

Another way to get a correlation structure that depen
directly on the values ofu and u8 in a significant way and
not only on their difference is to makem a function ofu. This
has a direct physical meaning as it means that if we imag
the forward rate curve as a string, its rigidity increases
maturity increases, makingA for largeru more strongly cor-
related ifm decreases as a function ofu.

We choose an exactly solvable functionm5m0 /(1
1lu); it declines to zero asu becomes large, as is expecte
from the observed covariance in Fig. 4, and contains
constantm case as a limit. The action is given by

S52
1

2 Et0

t1
dtE

0

`

duFA21S 11lu

m0

]A

]u D 2G . ~23!

This is still a quadratic action and can be put into a quadr
form by performing integration by parts and setting t
boundary term to zero, since we are assuming Neum
boundary conditions. The inverse~Green’s function! of the
quadratic operator, namely, the propagator for this action
found to be

D~u,u8;TFR!5
m0

2a

2la~a11/2!@12~11lTFR!22a#

3S a11/2

a21/2
~11lTFR!22a~11lu.!a21/2

1~11lu.!2a21/2D
3S a11/2

a21/2
~11lTFR!22a~11lu,!a21/2

1~11lu,!2a21/2D , ~24!

wherea5A 1
4 1m0

2/4l2.
Note that we have explicitly put the bound ofTFR on the

u variable. The reason for this is that the limits have to
taken carefully in order to compare this model to the HJM
the limit m0→0 and to the constant rigidity field theor
model whenl→0.
9-5



.
s

e

on
J

e
n

it
ld
hi

th

e

ror

e

tra
sid-
re-

e
s

or
to

m

m,
his

ote
ry

the
.
ase
i-
yr

en
to

-
limit

n

B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036129 ~2004!
Let us first consider the limitl→0. Note

a5S 1

4
1

m0
2

l2 D 1/2

;
m0

l S 11
l2

4m0
2D 1/2

;
m0

l
. ~25!

Therefore, we have

~11lu!2a21/25@~11lu!1/l#2m0~11lu!21/2;e2m0u.

~26!

Similarly (11lu)a21/2;em0u, (11lu)2a21/2;e2m0u, and
(11lTFR)22a;e22m0TFR. Putting all these limits into Eq
~24! and performing some straightforward simplification
we see that Eq.~24! becomes equal to Eq.~10! in the limit
l→0. In taking this limit, we did not have any difficulty
with TFR. However, for the HJM limit, we will see that th
limit TFR→` has to be taken only after the limitm0→0 has
been taken.

Let us now consider the limitm0→0. In this limit, a; 1
2

1m0
2/l2. Hence, only one term in Eq.~24! survives as all the

others are multiplied bya21/2. This surviving term can be
evaluated as

m0
2

2l

~a11/2!2

a21/2

1

12~11lTFR!21 ~11lTFR!21

5
m0

2

2l

2l2

m0
2

~11lTFR!

lTFR

1

~11lTFR!
5

1

TFR
. ~27!

The terms (11lu.)a21/2 and (11lu,)a21/2 obviously go
to 1 in this limit and so were not included in the calculati
above. This result can be seen to be equivalent to the H
propagator after normalization. If the limitTFR→` is taken
first, then the propagator becomes

D~u,u8!5
m0

2~a21/2!

2la~a11/2!
~11lu.!2a21/2

3S a11/2

a21/2
~11lu,!a21/21~11lu,!2a21/2D ,

~28!

which exhibits au dependence in the limitm0→0. Hence,
this cannot be made equivalent to HJM if the limits are tak
in the wrong order. This problem is not present in the co
stant rigidity model.

For comparison with market data, we still take the lim
TFR→` as the model is still directly related to the fie
theory model. The predicted correlation structure for t
model is then given by

CQFT
~3! ~u,u8!5S ~a11/2!~11lu,!2a1a21/2

~a11/2!~11lu.!2a1a21/2D
1/2

.

~29!

We fitted the parametersm0 andl to the correlation struc-
ture observed in the market in a similar manner as for
field theory model and obtained the resultsm0
51.231025 yr21 andl50.108 yr21. The root mean squar
03612
,
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error in the correlation was 3.35%. On performing the er
analysis for the parameters, it was found thatm0 is very
unstable but always very small~less than 1022 yr21), while
the 90% confidence interval forl is ~0.099, 0.149!.

The relatively high value forl seems to show that th
falloff of the rigidity parameterm5m0 /(11lu) is fairly
rapid. The error reduces from 4.23% to 3.35%, but an ex
parameterl has to be added and the model becomes con
erably more complicated. Further, we seem to be in the
gion of very smallm0 , which does not behave well in th
HJM limit. In fact, the correlation structure in this limit i
given by

lim
m0→0

CQFT
~3! ~u,u8!5S 11lu,

11lu.
D 1/2

. ~30!

Due to the very small value ofm0 for the fitted function, this
is a very good approximation for the fit. The obtained fit f
the correlation function yields a propagator very similar
the one given for the constant rigidity in Fig. 5.

The limited improvement, the relatively complicated for
of the correlation, and the near zerom0 problem prompted us
to consider a different way of approaching the proble
which presented a much more satisfactory solution. T
model is described in the following section.

X. FIELD THEORY MODEL WITH f „t,z„u……

To see where we might make an improvement, we n
that the predicted correlation structure with the field theo
model is largely defined by thee2muu.2u,u term, which
means that the correlation does not depend explicitly on
timesu. andu, .2 However, we see immediately from Fig
3 that the correlation increases significantly as we incre
u. andu. . This is intuitively reasonable as market partic
pants are likely to treat the difference between 10 and 15
into the future quite differently from the difference betwe
now and five years. In other words, there is good reason
expect limu,→` D(u. ,u,)51.3 This is not satisfied by the
constant rigidity models or by the varying rigidity model~if
the limit TFR→` is taken!. For the latter model this is
slightly surprising, sincem→0 asu→` and we might ex-
pect that for largeu the varying rigidity model should go into
the HJM model limit (D51). However, this does not hap
pen, as previously discussed, since we have taken the
TFR→`.

Note that introducing the metricz~x-t! is different from
giving a maturity dependence to the rigidity functionm~u!.
To see this, we write the action with the rigidity functio
m~u! as

Sold52
1

2 Et0

t1
dtE

0

`

duFA21
1

m0
2 S ]A

]z D 2G , ~31!

2There is another term of the forme2m(u.1u,), but this has only
a small effect on the correlation structure.

3Obviously,u,→` automatically impliesu.→`.
9-6
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where the functional variation ofm with u has been absorbe
into the variablez5g(u) ~whereg is invertible! so thatm0

above is a constant. With a change of variables we get
action as

Sold52
1

2 Et0

t1
dtE

g~0!

g~`!

dz h8~z!FA21
1

m0
2 S ]A

]z D 2G , ~32!

whereh5g21. With the introduction of the metric, we ob
tain the action

Snew52
1

2 Et0

t1
dtE

g~0!

g~`!

dzFA21
1

m0
2 S ]A

]z D 2GÞSold .

~33!

The Green’s functions forSnew should be solved using th
z variables, and as expected the solution is given

FIG. 6. Observed normalized correlation structu
^d f (t,u)d f (t,u8)&/A^d f 2(t,u)&A^d f 2(t,u8)&: a different view.
03612
e

y

D(z,z8)5 1
2 @exp2m0uz2z8u1exp2m0(z1z8)#. It can be

shown that the martingale condition is satisfied with t
Green’s function given byD(z,z8).

Bearing in mind the condition that, at largeu, the corre-
lations should be close to 1, we choose a metric that satis
the propertyg(u)5tanhbu. We use this form of the metric
to fit the correlation structure and obtain the result thatm
50.48 yr21 andb50.32 yr21 with a root mean square erro
of only 2.46%. Both parameters are also stable when
error analysis for the parameters is carried out. The 9
confidence interval form is ~0.45, 0.58! and that forb is
~0.22, 0.33!. Hence, we see that even the parameter esti
tion for this model is more robust as the parameters ar
least stable. Further, the shape of the fitted function is cle
closer to the observed one, as can be seen from Figs.
and 7. The error that remains is largely confined to the c
relation between the spot rate and other forward rates, wh
is not too surprising since the spot rate behaves very dif
ently from the other forward rates.

We emphasize here that the coordinatez(u) involves a
fundamentally new way of considering the interest ra
models.

FIG. 7. Fitted correlation for the model with metricg(u)
5tanhbu.
TABLE I. Summary of field theory models of the forward rates@m, Aa, l, b are all measured in units of (yr)21].

Model C(u,u8) m a/m2 l b AError

Constant rigiditym Se2mu. coshmu,

e2mu, coshmu.
D1/2

0.06 4.23%

Constrained spot rate S e2mu.S coshmu,2
me2mu,

m1a D
e2mu,Scoshmu.2

me2mu.

m1a D D
1/2

9.4 3.54%

m5
m0

11lu
;a5S 1

4
1

m0
2

4l2D 1/2 S ~a11/2!~11lu,!2a1a21/2

~a11/2!~11lu.!2a1a21/2
D 1/2

0.011 0.1 3.35%

z5tanh(bu) Se2mz. coshmz,

e2mz, coshmz.
D1/2

0.48 0.31 2.46%
9-7
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XI. SUMMARY

We summarize below in Table I the results for the vario
field theory models that we have analyzed.

Most models in finance for the forward rates are gener
zations of the HJM model. Our empirical study shows th
the one-factor HJM model has too little freedom and that
two-factor HJM model has too much freedom. While reta
ing this HJM framework, the field theory generalization a
lows us to reasonably match the observed behavior of
forward rates and avoid the pitfalls of the HJM model. A
important advantage of Gaussian field theory models is t
unlike the common practice in the HJM model, one can
03612
s

i-
t
e
-

e

t,
-

tain the volatility of the forward rates directly from marke
data.

One can further refine the field theory model by usi
empirical data as a guide and possibly include effects
market psychology in the model, and has been done in@6#.

ACKNOWLEDGMENTS

We would like to thank Jean-Philippe Bouchaud and S
ence and Finance for kindly providing us with the data us
for this study. One of us~B.E.B.! would like to thank Cui
Liang for verifying the figures.
n-
ng
@1# B. E. Baaquie, Phys. Rev. E64, 016121~2001!.
@2# B. E. Baaquie, Phys. Rev. E65, 056122~2002!.
@3# B. E. Baaquie, Quantum Finance~Cambridge University

Press, Cambridge, 2004!.
@4# A. Matacz and J.-P. Bouchaud, Int. J. Theor. Appl. Finance3,
703 ~2000!.
@5# W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Fla

nery,Numerical Recipes in C: The Art of Scientific Computi
~Cambridge University Press, Cambridge, 1995!.

@6# B.E. Baaquie and J.-P. Bouchaud~unpublished!.
9-8


