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Comparison of field theory models of interest rates with market data
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We calibrate and test various variants of field theory models of the interest rate with data from Eurodollar
futures. Models based on psychological factors are seen to provide the best fit to the market. We make a model
independent determination of the volatility function of the forward rates from market data.
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I. INTRODUCTION ot (t,%) K
7 =0+ 2 aitm (), @

In this paper, we compare field theory models of interest
.rate$ with market datg, and propose certain modified mOdekf/here 7; represent independent white noises. The action
inspired from theoretical considerations and observed faCtﬁmctional is
about the interest rates. The fundamental quantity that is
modeled is the forward raté(t,x), which is the interest 1 X
rate—fixed at timg—for an instantaneous deposit at some SW]=- 52 j dtn?(t). (3
time x>t in the future. =1

Tf\e theoret|c_al framework for all these models in Baa'We can use this action to calculate the generating functional,
quie’s formulation [1-3] of forward rates as a two- which is
dimensional quantum field theory. The Baaquie model is a
generalization of the Heath-Jarrow-MortgrlJM) model; Ko,
the key feature of the field theory model is that the forward Z[j ,tl,tz]:f DW ex;{ > f dt j;(t)W;(t)
ratesf(t,x) are imperfectly correlated in the maturity direc- i=1Jy
tion x>t, and which is specified by a rigidity paramejer Ko
The models we study are the followings) forward rates :exr{E zdtj-z(t)}. (4)
with constant rigidity 1], (b) forward rates with the variation =1y
of the spot rate constrained by a paramg®rforward rates
with maturity dependent rigidity.(x—t), and (d) forward Ill. FIELD THEORY MODEL WITH CONSTANT
rates with nontrivial dependence on maturity specified by an RIGIDITY
arbitrary functionz=z(x—t).

We first briefly review Baaquie’s field theory model and ~ We now review Baaquie’s field theory model presented in
review the market data used in this study. We then introduc&ef. [1] with constant rigidity. Baaquie proposed that the
two variants of Baaquie’s model and test these models. WEorward rates being driven by white noise processes in Eg.
find that the observed correlation structure can be explainet® be replaced by considering the forward rates to be a
by a relatively straightforward two-parameter field theoryquantum field. To simplify notation, we write the evolution
model that also has a meaningful theoretical interpretation.eduation in terms of the velocity quantum fieddt,x), and

eSolWity . t7]

which yields
Il. THE HJM MODEL ot (t,x) K
Definition of the model . a(t,x)-l—zl 7i(LX)A(LX) ®)
In the HIM model, the forward rates are given by or

t
f(t,x)=f(t0,x)+f dt’ a(t’,x)
t

0

t
f(t,x):f(to,x)+f dt’ a(t’,x)
to

+2

K
=1

t K
I+ 7y t
todt o’ X)dWi(t"), D +i§=1 tOdt'(J'i('[',X)Ai(t’,X). (6)

where W, are independent Wiener processes. We can alsthe main extension to HIM is thatdepends oix as well as
write this as t unlike W which only depends on
While we can put in many field&; , we will see from our
analysis that the generality brought into the process due to
*Electronic address: phybeb@nus.edu.sg the extra argumentwill make one field sufficient. Hence, in
TElectronic address: srikant@srikant.org future, we will drop the subscript foh.
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Baaquie further proposed that the fieddhas the free-
(Gaussianfree-field action functional

2

s= 1fmdtft+TFRd P 7
20, AT el "

with Neumann boundary conditions imposedxatt and x
=t+Ter. This makes the action equivaldiafter an integra-
tion by parts where the surface term vanishes

o= 1J‘°°d JHTFRd 1 1 5 A
__E , t . X A(t,X) _?W (t,X).
(8
This action has the partition function
tq t+Ter
Z[j]=exp(f dtf dx dx j(t,x)
0 t
XD(X—t,X’—t)J(t,X’)) 9
with
D(6,0";Ter)
_ coshu(Ter—|0—0'[)+coshu(Ter—(6+6"))
B 2 Siﬂh,uT,:R
=D(0',0;Tgr) (symmetric function of6,0"), (10)
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The basic model with constant rigidity can be generalized
in many different ways. The generalizations to positive val-
ued forward rates and to models with stochastic volatility are
studied in Refs[2,3]. In this paper, we generalize the free-
field model to more complex dependenceuc@ndf(t,x) on
the maturity directiory.

IV. EURODOLLAR MARKET DATA

We use the Eurodollar futures data for the analysis of this
paper. A Eurodollar futures contract represents the interest
rate on a deposit of US $1 000 000 for three months at some
time in the future. At present, futures contracts for deposits
of up to ten years into the future are actively traded. Signifi-
cant historical data for contracts on deposits up to seven
years into the future are available.

It was assumed for simplicity that the Eurodollar futures
prices directly reflect the forward rate, an assumption previ-
ously used in the literaturgl]. This is a reasonable assump-
tion as the forward rates are small enough, so that the differ-
ence between the logarithmic measure of the forward rate
used in theory and the arithmetic rates used in the market are
insignificant. If one makes the reasonable approximation that
f(t,0) is linear for # between contract times that are sepa-
rated by a three month’s interval, one can use these data as a
direct measure of the forward rates.

We have also analyzed treasury bond tick data from the
GovPx database, but found it impossible to obtain forward
rates accurate enough for our purposes. The main reason for
this is that while we were able to obtain reasonably accurate
yields for a few maturities, the differentiation required to get

where /=x—t and #’=x’'—t. We can calculate expecta- the forward rates from the yields introduced too many inac-
tions and correlations using this partition function. Note thatcuracies. This is somewhat unfortunate since treasury bonds
due to the Neumann boundary conditions, the inverse of theepresent risk-free instruments, while a small credit risk ex-
differential operatoD actually depends on only the differ- ists for Eurodollar deposits.

encex—t. The above action represents a Gaussian random For the following analysis, we used the closing prices for

field with covariance structur®. In Ref. [1], a different

the Eurodollar futures contracts for the period of 1990-1996.

form was found as the boundary conditions used were DiThis is the same data as used by Matacz and Bouch#ud
richlet boundary conditions with the end points integratedwhere the spread of the forward rates and the eigenfunctions
over. This boundary condition is in fact equivalent to theof its changes in time are analyzed. For our purposes, we
Neumann condition, which leads to the much simpler propafound it more useful to look at the scaled multivariate cumu-

gator above. In the limifTgg—, which we will usually
take, the propagator takes the simple
we “%> coshud_, where #- and 6. stand for maxg,6’)
and min@,0") respectively.

When p—0, this model should go over to the HIM

model. This is indeed the case, since JinD(6,0";Teg)

lants of the changes in forward rates for different maturity

formtimes.

V. ASSUMPTIONS BEHIND THE TESTS OF THE MODELS

The main assumption that is made for all the tests of the

=1/Tgr. The extra factor off . is irrelevant as it is due to models is that of time translation invariance. In other words,

the freedom we have in scalingandD. The o we use for
the different models are only comparable aftBr is

we have assumed that(t,6) depends only ord and not
explicitly on t. We also assume that the propagdd{m, 0")

normalized After this choice of normalization, the propaga- has no explicit time dependence, which is possible in prin-
tor for both the HIM model and the field theory model in theciple. It is reasonable and conceptually economical to as-

limit u—0 goes aP(4,0')— 1, showing that the two mod-

els are equivalent in this limit.

sume that different times in the future are equivalent. Fur-

ther, carrying out any meaningful analysis while these

quantities are subject to changes in time is more difficult.
Another important assumption that has to be made is that

This freedom exists since we can always make the transformatiofhe forward rate curve is reasonably smooth at small inter-

a(0)~¢(0)a(F) andD(6,6')~D(6,0")/L(6)¢(0")—where {(6)
is an arbitrary scale factor—without affecting any result.

vals at any given point in time. This assumption is very
difficult to test in any meaningful sense, given the relative
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paucity of data as forward rate data is available only at three- £18,)
month intervals(which is what necessitates this assumption ~ s 7
in the first placé However, the assumption is a reasonable ’
one to make as one would intuitively expect that the forward -
rate, say, three years into the future would not be too differ- s
ent from that of three years and one month into the future. ’
In fact, we will show that there seems to be strong evi- s
dence of very long term correlations in the movements of the z
forward rate. This seems to make the smoothness assumption x=t8, ®
reasonable as the nearby forward rates tend to move together
(except poss[bly .at p°”.“s very close to the current Jime forward rates by linear interpolation from the actual forward rates
This assumption is required as the forward rate data are PrQhich are specified at constaxt
vided for constant maturity, which we have been denoting by
X, while we want data for constartt as shown in Fig. 1.
With this assumption, we can get the data by a simple linear
interpolation. The loss in accuracy due to this linear interpo-
lation is not all that serious i§, the time interval oft be- An important quantity to look at in the analysis of forward
tween specifications of the forward rates, is small, since theatesf(t, ) is the correlation(or scaled covariangeamong
random changes which we are interested in will be muchheir changes for differert. Specifically, we are interested in
larger than the introduced errors. This same procedure wake correlation betweensf(t,6) and &f(t,0’), where
used in Matacz and Boucha(id]. of(t,0)="f(t+¢€,0)—1(1,0):

FIG. 1. The lines of constar#t for which we have obtained the

VI. THE CORRELATION STRUCTURE
OF THE FORWARD RATES

(5 (t,0)5F(t,0"))— (5 (t,0))(5(t,0"))

C(6,6")

(11

Using a free (Gaussiah quantum field theory(QFT)
model, this quantity should be equal to

D(6,0")

Corr(0,0") = (12

(oL, 0))— (BT (L, B)) P\ OFA(L, 07 )y —(OF (L, 6))2

Since the propagator is always symmetric, for purposes of
comparison for the different models it will be convenient to
calculate onlyD(6_,6-).

For the one-factor HIM model, this correlation structure
is constant as all the changes in the forward rates are per-

\Y ) ,7 ! -
D(6,6)D(6",6") fectly correlated. In other wordd);u(6,0')=1. For the

If we have a model for the propagatdr(¢,0’), we have two-factor HIM model, the predicted correlation structure is

a prediction for this correlation structure. Alternatively, we given by
can use the correlation structure to fit free parameters in
D(6,0").

It should be noted that for fre@aussiapquantum fields
the normalized correlation imdependentf o(6), so no as-
sumption of its form has to be made. This is the reason why
we used the scaled covariance rather than the covariance
itself to perform the study. It is equivalent to fixing the in-
herent freedom in the quantities and D so as to make
D(6,6)=1. We then have

a(0)=(5t2(t,0))—(5f(t,0))%

The reduction in the freedom of allows us to directly
estimate it from data and is shown in Fig. 2. Further, with
this normalization for the propagator the correlation between
the changes in the forward curve is given exactlylhyThe
correlation structure in the market estimated from the Euromight be a better quantity for testing the HIM model, since it
dollar futures data is shown in Fig. 3. The structure is fairlyis simpler than the normalized correlation. For the two-factor
stable in the sense that the correlation structure for differeniJM model, the prediction of the covariance has a simpler
sections of the data are reasonably similar. form

01(0)o1(0")+0x(0)ox(0")
Na2(9)+a5(0)\oi(8')+a5(8")

_ 1+g(0)9(8)
V1+9g2(0)V1+g%(6')

Cram(0,0")=

(14)

We see that this correlation structure depends on a function
of g(8)=o0(0)/o,(0). Hence, a whole function has to be
fitted from the correlation structure, something which is quite
infeasible. The covariance given by

D(6,0)=1. (13

C(6,0")=(5t(t,0)5t(t,0"))— (5 (t,0))( 5F(t,0))
(19

036129-3



B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036129 (2004

0.065 - covariancs
o e [
\‘ 6‘006 o
0.055 - 0.0055 |
- 0.005 |
- 0.,0045
£ o051 076035 |
’s' 0.003 :
0.045 %o%e |
&
0.04
o
0.08% +~r—1T—+—"-—""r-r-r—"—"r-r-r—r—TrrrrrTTTTTT"
025 125 225 325 4.25 525 6825 725 T 370
time(year) Time (quarter)

FIG. 2. The empirically determined volatility function for ~ FIG. 4. The covariance of changes of forward rates
Gaussian  field  theory models given by o(g)  (Sf(t,6)5f(t,6")) observed in the market.

=(5f%(t,0))—(5f(t,0))%, with normalization chosen to be
D(6,6)=1. in the forward rates in terms of a Gaussian random fkeld

whose structure is defined by the action in Eg. For con-
Cram(6,0)=01(0)1(0" )+ ao(0)0x(8"). (16) venience, we repeat the action below in terms of the vari-
ablest and 6=x—t,
9A\ 2
a0

We still need to specify a functional form fer, ando, as it
is not possible to estimate entire functions from data. The 1ty o
_Ef dtf do| A%+ . (17)
to 0

usual specification of,(0) = o ando,(0) =o,e *’ is eas- S=
ily seen to be unable to explain many features of the covari-

ance shown in Fig. 4 such as the peak at one year or the To obtain the predicted correlation structure from propa-
sharp reduction in covariance as the maturity goes to zero. P T . prop
gator(10), we take the limitTgg—c0 and obtain

We hence conclude that the one-factor HIM model is in-
sufficient to characterize the data, while the two-factor HIM
model .providgas us with too much frgedom, because we neecb(‘9’01):Me—;,,9> Coshﬂa<:ﬁ(e—ﬂ|e—a'\+e—M<e+ o).
an entire arbitrary function to explain the correlation struc- 2
ture. If we try to reduce the freedom by theoretical consid- (18
erations, we are again unable to explain the data.

We will see that the field theory model with constant ri- The predicted correlation structure for this model can be
gidity, while explaining some features of the correlation,found from this form of the propagator by normalization and
does not predict the correlation very well. We are hence ledrom Eq.(12) and obtain
to consider various generalizations of the constant rigidity

model. e % coshu 6
(0,0 =\ 19
Corr(0,67) e “%< coshuf-" (19
VII. ANALYSIS OF FIELD THEORY MODEL
WITH CONSTANT RIGIDITY To estimate the parametgrfrom market data, we use the

We have analyzed this model in detail in the preceding-€Venberg-Marquardt method from Pretsal. [5] to fit the

section. We have seen that the model describes the chang@@meters to the observed correlation structure shown in
Fig. 3. The fitting was done by minimizing the square of the

error. The overall correlation was fitted hy=0.061 yr L.

To obtain the error bounds, the data was split into 346
datasets of 500 contiguous days of data each and the estima-
tion done for each of the sets. The 90% confidence interval
for this dataset i940.057, 0.07% Note that the confidence
interval is asymmetric from the overall best fit due to the
nonlinear dependence of correlatioh9) on w. The root
mean square for the correlation for the best fit value is
4.23%, which shows that the model’s prediction for the cor-
relation structure is not very good.

The main problem, as can be seen from a comparison
between the prediction for the best fitin Fig. 5 and the
actual correlation structure in Fig. 3, is that the prediction is

FIG. 3. The normalized correlation  structure largely independent of the actual value @&nd largely de-
(5f(t,0) 8t (t,0")){S5F2(t,6))(5F(t,67)) observed in the mar- termined by|6— 6’|, which is not the case in reality. The
ket. correlation rapidly increases #&sincreases in reality.

0. 9%
0.9
0.85
0.8
0.7%
0.7
0.65

Time (quarner) 2 30 O
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The correlator for the constrained propagator looks very
similar to Fig. 5, except that the behavior at lajs slightly
better when the constraint is put in. The root mean square
error was 3.35% which again means that the fit was not very
good, though significantly better than if the constraint was
not applied. It must be recognized that the constraint intro-
duces one extra free parameter which should improve the

° best fit. Hence, we see that this model, while again perform-
ing better than HJIM, is still not very accurate. While the
results are not very good, they do represent a reasonable first
approximation and are still significantly better than the one-
factor HIM model.

IX. FIELD THEORY MODEL WITH MATURITY
Time (quarten) 2 20 2° DEPENDENT RIGIDITY p=pu(6)

FIG. 5. Fitted correlatiorﬂS,ZT for the constant rigidity model. Another way to get a correlation structure that depends

directly on the values o and 6" in a significant way and
VIll. FIELD THEORY WITH CONSTRAINED SPOT RATE not only on their difference is to makea function ofé. This

One clear fact we notice from the covariance of theNas a direct physical meaning as it means that if we imagine
changes in the forward rates in Fig. 4 is that the covariancéh® forward rate curve as a string, its rigidity increases as
falls rapidly asf— 0. This observation leads one to a model Maturity increases, making for larger § more strongly cor-
whereA(t,0) is constrained to follow a normal distribution rélated ifu decreases as a function &f o
with variancea. The mean ofA(t,0) can be fixed at any =~ e choose an exactly solvable function=pu,/(1
value, but will cause a corresponding changexif) which +\6); it declines to zero ag becpme_s large, as is exp_ected
makes the mean value irrelevant. For calculational purposd€em the observed covariance in Fig. 4, and contains the
it is easiest to assume that it remains at zero. This constraifPnstantu case as a limit. The action is given by
can be implemented by modification of the action to 1t (e 1470 9A|2

s=—=| 'dt| de =
2Jt, Jo

Mo 0
This is still a quadratic action and can be put into a quadratic
form by performing integration by parts and setting the
boundary term to zero, since we are assuming Neumann
boundary conditions. The inverg&reen’s function of the
quadratic operator, namely, the propagator for this action, is
(21)  found to be

A%+ ( . (23

eSconstrained= f dgei §A(t'0)e*32§2/2e8, (20)

where S is the action specified in Eq17). The propagator
D(6,0'") for this model is given by

—ub<

1y — —unb -
D(6,0")=ue >(cosh,u0< ta

poa
2 a(a+12)[1— (1+ATem) 27]

After normalizing, we see that the prediction for the correla- D(6,0";Tgr) =
tion structure is given by

a+1/2 72 1
0 e Hi<\\ 12 X _1/2(1+)\TFR) “(I+N0-)
e #%>| coshuf_— ta @
Cl(0,0")= -
< e “%<| coshu 0~ — e +(1+)\6>)_a_1/2)
LU~ L+a
22 at+1/2 —2a a—1/2
X| 75 (1A TR 241+ N6

We can see that the free parametersa@nda. Further,
it will be seen that it is easier to consider the ratiq.? as it
is dimensionless. The results of the Levenberg-Marquardt +(1+)\0<)“1’2) , (29
method show that the gittedlvalues af andlg Wege very
small, of the order of 10’ yr~* for x and 10 ~° yr™“ for a,
both being very unstable but the ratitu? was stable witha wherea= /' + u3/4\2.
value in the rang€6.7,10.7 with an overall best fit of 9.4. Note that we have explicitly put the bound ©fg on the
The most reasonable explanation for this behavior is that thé variable. The reason for this is that the limits have to be
ratio a/ u? determines the behavior of ER2) for small . taken carefully in order to compare this model to the HIM in
and it is this region of the parameter space which gives #he limit uo—0 and to the constant rigidity field theory
correlation structure closest to the empirically observed onenodel when\ — 0.
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Let us first consider the limik—0. Note error in the correlation was 3.35%. On performing the error
012 o 1 analysis for the parameters, it was found thef is very
_ E+ @) kol AT ko (25 unstable but always very smaless than 102 yr™ 1), while
a=l27\2 N Aud N the 90% confidence interval foris (0.099, 0.14%

The relatively high value foih seems to show that the
Therefore, we have falloff of the rigidity parameteru= uqo/(1+\0) is fairly
T - CA2 gt rapid. The error reduces from 4.23% to 3.35%, but an extra
(1+\0) =[(1+N0) ] #o(1+N0) " ~e Ko, parametei has to be added and the model becomes consid-
(26)  erably more complicated. Further, we seem to be in the re-
gion of very smallugy, which does not behave well in the
Similarly (1+X )% Y2~ero? (1+10) ¢ Y2~e #0? and  HJIM limit. In fact, the correlation structure in this limit is
(1+A\TeR) ~2¢~e 2#Trr, Putting all these limits into Eq. given by
(24) and performing some straightforward simplifications,

we see that Eq(24) becomes equal to E@10) in the limit s o [1HNe\M

A—0. In taking this limit, we did not have any difficulty lim Coe(6,6") = 1+N6- (30
with Trr. However, for the HIM limit, we will see that the to—0

limit T has to be taken only after the limit,—0 has , . .
been t;i:no_o y Mo Due to the very small value ¢f, for the fitted function, this

is a very good approximation for the fit. The obtained fit for
the correlation function yields a propagator very similar to
the one given for the constant rigidity in Fig. 5.

The limited improvement, the relatively complicated form
of the correlation, and the near zeig problem prompted us

Let us now consider the limijt,— 0. In this limit, a~ 3
+ ,u%/)\z. Hence, only one term in E24) survives as all the
others are multiplied byr—1/2. This surviving term can be
evaluated as

ul (a+1/2)2 1 to consider a different way of approaching the problem,
=2 —(1+ATgr) ¢ which presented a much more satisfactory solution. This
2k a=1/2 1-(1+ATee) model is described in the following section.

Ko 2N (14T 11 -

TN M(Z) ATer  (L+ATeR) - Ter' X. FIELD THEORY MODEL WITH  f(t,z(8))

To see where we might make an improvement, we note

a—1/2 a—1/2 ;
The terms (1A 0 and (1+X0-)* " obviously g0 hat the predicted correlation structure with the field theory
to 1 in this limit and so were not included in the calculation el is largely defined by the #!%>=%< term, which

above. This result can be seen to be equivalent to the HIM,o g that the correlation does not depend explicitly on the
propagator after normalization. If the limfizg—c is taken  timas g and 6. .2 However, we see immediately from Fig.

first, then the propagator becomes 3 that the correlation increases significantly as we increase

2(a—1/2) 0~ and 6~ . This is intuitively reasonable as market partici-
= 20 + —a—1p2 pants are likely to treat the difference between 10 and 15 yr
D(6,60") (1+N6-) _ T .
2 a(a+1/2) into the future quite differently from the difference between
wt1/2 now and five years. In other words, there is good reason to
X a_—1/2(1+>\0<)“71’2+(1+)\0<)’“’1’2 , expect limy__..D(0~,0-)= 1.2 This is not satisfied by the

constant rigidity models or by the varying rigidity modél
(28)  the limit Ter— is taken. For the latter model this is
slightly surprising, sinceu—0 as §—« and we might ex-

which exhibits a# dependence in the limii.o—0. Hence,  act that for large the varying rigidity model should go into
this cannot be made equivalent to HIM if the limits are takenpo HiM model limit O=1). However, this does not hap-

in the wrong order. This problem is not present in the con
stant rigidity model.

. . . .. Tpr—oe.
For comparison W|th.mar_ket Qata, we still take the !|m|t Note that introducing the metrig(x-t) is different from
Ter—o0 as the model is still directly related to the field

4 i " giving a maturity dependence to the rigidity functigits).
theory model. The predicted correlation structure for thisty gae this, we write the action with the rigidity function
model is then given by w(0) as

pen, as previously discussed, since we have taken the limit

(a+1/2)(1+N0.)%+ a—1/2\ 2

1t (=
(a+1/2)(1+N6-) %+ a—1/2] so,dz——fldtf do
(29 2 )i, 0

(3) " — 1 [9A 2
CQFT( 0’6 ) A2+ 5 , (31)
Ko\ 92

We fitted the parametejs, and\ to the correlation struc-
ture observed in the market in a similar manner as for the 2There is another term of the forer #(?>* <) put this has only
field theory model and obtained the resultgg a small effect on the correlation structure.
=1.2x10"° yr Y andA=0.108 yr *. The root mean square  Obviously, 6. — automatically impliess. — .
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Time {quarten}

FIG. 6.

where the functional variation qf with # has been absorbed
into the variablez=g(6) (whereg is invertible so thatug

Observed

normalized

25

30 30

correlation  structure
(SF(t,0) 81 (t,0")){SF2(t, 0))V(S5F(t,07)): a different view.

0
Time (quarter)
as

=tanhpé.

Time (quarier)
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above is a constant. With a change of variables we get thgreen’s function given by (z,z').

action as

1 (1t g()
Sold:_if dtf dz h/(Z)
2 )ty oo

whereh=g~1. With the introduction of the metric, we ob-

tain the action

)

The Green’s functions fo8,,, should be solved using the fundamentally new way of considering the interest rate

ty g(*)
dt
0 g(0)

dz

A+

, 1 FINE
AP+ —|—
Ko\ 92

dA
9z

Bearing in mind the condition that, at large the corre-

D(z.2') = 3[exp-pdz—2|+exp-pofz+2)]. 1t can
shown that the martingale condition is satisfied with the

It

FIG. 7. Fitted correlation for the model with metrig(0)

can be

lations should be close to 1, we choose a metric that satisfies

the propertyg( ) =tanhB6. We use this form of the metric

to fit the correlation structure and obtain the result that
» 32 —0.48yr!andB=0.32yr ! with a root mean square error
of only 2.46%. Both parameters are also stable when the
error analysis for the parameters is carried out. The 90%
confidence interval fo is (0.45, 0.58 and that forg is
(0.22, 0.33. Hence, we see that even the parameter estima-
tion for this model is more robust as the parameters are at
least stable. Further, the shape of the fitted function is clearly
closer to the observed one, as can be seen from Figs. 6, 5
and 7. The error that remains is largely confined to the cor-
relation between the spot rate and other forward rates, which
(33 is not too surprising since the spot rate behaves very differ-

2
:|7&So|d.

ently from the other forward rates.
We emphasize here that the coordinaf®) involves a

z variables, and as expected the solution is given bymodels.

TABLE I. Summary of field theory models of the forward rafgs va, \, B are all measured in units of (yi}].

Model C(9,6') n alu? \ B Error
L e~ coshud\Y?
Constant rigidityu ——————— 0.06 4.23%
e #’<coshué-.
e mh<\\ 12
e*’“’>(cosh,u6<— e
Constrained spot rate M—,w 9.4 3.54%
e >
—ub< —
e (cosh,u0> ta
1 ug |\ UD(1+N0) 2+ a—1/2)
=10 ;a_(_+ _02) (et V2)(AH+ N0 )"+ ™ 0.011 0.1 3.35%
1+\6 4 4\ (a+1/2)(1+N6-)%+ a—1/2
e #% coshuz. \'?
z=tanh(36) ( “Z<) 0.48 0.31 2.46%

e "< coshuz.
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Xl. SUMMARY tain the volatility of the forward rates directly from market

We summarize below in Table | the results for the variousdata'
. One can further refine the field theory model by using
field theory models that we have analyzed.

Most models in finance for the forward rates are generali—empmcal data as a guide and possibly include effects of

zations of the HIM model. Our empirical study shows thatmarket psychology in the model, and has been dor{€]in
the one-factor HJIM model has too little freedom and that the
two-factor HIM model has too much freedom. While retain-
ing this HIM framework, the field theory generalization al-
lows us to reasonably match the observed behavior of the We would like to thank Jean-Philippe Bouchaud and Sci-
forward rates and avoid the pitfalls of the HIM model. An ence and Finance for kindly providing us with the data used
important advantage of Gaussian field theory models is thafpr this study. One of u$B.E.B) would like to thank Cui
unlike the common practice in the HIM model, one can ob-iang for verifying the figures.
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